000 | 04240nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-981-99-7657-7 | ||
003 | DE-He213 | ||
005 | 20240730170559.0 | ||
007 | cr nn 008mamaa | ||
008 | 231129s2024 si | s |||| 0|eng d | ||
020 |
_a9789819976577 _9978-981-99-7657-7 |
||
024 | 7 |
_a10.1007/978-981-99-7657-7 _2doi |
|
050 | 4 | _aQ336 | |
072 | 7 |
_aUN _2bicssc |
|
072 | 7 |
_aCOM021000 _2bisacsh |
|
072 | 7 |
_aUN _2thema |
|
082 | 0 | 4 |
_a005.7 _223 |
100 | 1 |
_aQi, Zhixin. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _994453 |
|
245 | 1 | 0 |
_aDirty Data Processing for Machine Learning _h[electronic resource] / _cby Zhixin Qi, Hongzhi Wang, Zejiao Dong. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2024. |
|
300 |
_aXIII, 133 p. 1 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aChapter 1. Introduction -- Chapter 2. Impacts of Dirty Data on Classification and Clustering Models -- Chapter 3. Dirty-Data Impacts on Regression Models -- Chapter 4. Incomplete Data Classification with View-Based Decision Tree -- Chapter 5. Density-Based Clustering for Incomplete Data -- Chapter 6. Feature Selection on Inconsistent Data -- Chapter 7. Cost-Sensitive Decision Tree Induction on Dirty Data. | |
520 | _aIn both the database and machine learning communities, data quality has become a serious issue which cannot be ignored. In this context, we refer to data with quality problems as "dirty data." Clearly, for a given data mining or machine learning task, dirty data in both training and test datasets can affect the accuracy of results. Accordingly, this book analyzes the impacts of dirty data and explores effective methods for dirty data processing. Although existing data cleaning methods improve data quality dramatically, the cleaning costs are still high. If we knew how dirty data affected the accuracy of machine learning models, we could clean data selectively according to the accuracy requirements instead of cleaning all dirty data, which entails substantial costs. However, no book to date has studied the impacts of dirty data on machine learning models in terms of data quality. Filling precisely this gap, the book is intended for a broad audience ranging from researchers inthe database and machine learning communities to industry practitioners. Readers will find valuable takeaway suggestions on: model selection and data cleaning; incomplete data classification with view-based decision trees; density-based clustering for incomplete data; the feature selection method, which reduces the time costs and guarantees the accuracy of machine learning models; and cost-sensitive decision tree induction approaches under different scenarios. Further, the book opens many promising avenues for the further study of dirty data processing, such as data cleaning on demand, constructing a model to predict dirty-data impacts, and integrating data quality issues into other machine learning models. Readers will be introduced to state-of-the-art dirty data processing techniques, and the latest research advances, while also finding new inspirations in this field. | ||
650 | 0 |
_aArtificial intelligence _xData processing. _921787 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aBig data. _94174 |
|
650 | 1 | 4 |
_aData Science. _934092 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _994456 |
650 | 2 | 4 |
_aBig Data. _94174 |
700 | 1 |
_aWang, Hongzhi. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _94897 |
|
700 | 1 |
_aDong, Zejiao. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _994458 |
|
710 | 2 |
_aSpringerLink (Online service) _994462 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789819976560 |
776 | 0 | 8 |
_iPrinted edition: _z9789819976584 |
776 | 0 | 8 |
_iPrinted edition: _z9789819976591 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-981-99-7657-7 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
942 | _cEBK | ||
999 |
_c87061 _d87061 |