000 03423nam a22005535i 4500
001 978-3-031-54857-4
003 DE-He213
005 20240730171428.0
007 cr nn 008mamaa
008 240228s2024 sz | s |||| 0|eng d
020 _a9783031548574
_9978-3-031-54857-4
024 7 _a10.1007/978-3-031-54857-4
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMyopic Maculopathy Analysis
_h[electronic resource] :
_bMICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 8-12, 2023, Proceedings /
_cedited by Bin Sheng, Hao Chen, Tien Yin Wong.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2024.
300 _aX, 121 p. 33 illus., 31 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14563
505 0 _aAutomated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction -- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images -- Towards Label-efficient Deep Learning for Myopic Maculopathy Classification -- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation -- Beyond MobileNet: An improved MobileNet for Retinal Diseases -- Prediction of Spherical Equivalent With Vanilla ResNet -- Semi-supervised learning for Myopic Maculopathy Analysis -- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification -- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network -- Self-supervised Learning and Data Diversity based Prediction of Spherical Equivalent -- Myopic Maculopathy Analysis using Multi-Task Learning and Pseudo Labeling.
520 _aThis book constitutes the MICCAI Challenge, MMAC 2023, that held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, which took place in October 2023. The 11 long papers included in this volume presents a wide range of state-of-the-art deep learning methods developed for the various tasks presented in the challenge.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer vision.
_998510
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Vision.
_998513
700 1 _aSheng, Bin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998514
700 1 _aChen, Hao.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998516
700 1 _aWong, Tien Yin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998518
710 2 _aSpringerLink (Online service)
_998520
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031548567
776 0 8 _iPrinted edition:
_z9783031548581
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14563
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-54857-4
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cEBK
999 _c87577
_d87577