000 | 03423nam a22005535i 4500 | ||
---|---|---|---|
001 | 978-3-031-54857-4 | ||
003 | DE-He213 | ||
005 | 20240730171428.0 | ||
007 | cr nn 008mamaa | ||
008 | 240228s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031548574 _9978-3-031-54857-4 |
||
024 | 7 |
_a10.1007/978-3-031-54857-4 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aMyopic Maculopathy Analysis _h[electronic resource] : _bMICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 8-12, 2023, Proceedings / _cedited by Bin Sheng, Hao Chen, Tien Yin Wong. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer Nature Switzerland : _bImprint: Springer, _c2024. |
|
300 |
_aX, 121 p. 33 illus., 31 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v14563 |
|
505 | 0 | _aAutomated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction -- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images -- Towards Label-efficient Deep Learning for Myopic Maculopathy Classification -- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation -- Beyond MobileNet: An improved MobileNet for Retinal Diseases -- Prediction of Spherical Equivalent With Vanilla ResNet -- Semi-supervised learning for Myopic Maculopathy Analysis -- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification -- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network -- Self-supervised Learning and Data Diversity based Prediction of Spherical Equivalent -- Myopic Maculopathy Analysis using Multi-Task Learning and Pseudo Labeling. | |
520 | _aThis book constitutes the MICCAI Challenge, MMAC 2023, that held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, which took place in October 2023. The 11 long papers included in this volume presents a wide range of state-of-the-art deep learning methods developed for the various tasks presented in the challenge. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer vision. _998510 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Vision. _998513 |
700 | 1 |
_aSheng, Bin. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _998514 |
|
700 | 1 |
_aChen, Hao. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _998516 |
|
700 | 1 |
_aWong, Tien Yin. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _998518 |
|
710 | 2 |
_aSpringerLink (Online service) _998520 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031548567 |
776 | 0 | 8 |
_iPrinted edition: _z9783031548581 |
830 | 0 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v14563 _923263 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-54857-4 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cEBK | ||
999 |
_c87577 _d87577 |