000 06936nam a22006975i 4500
001 978-3-030-33391-1
003 DE-He213
005 20240730171507.0
007 cr nn 008mamaa
008 191011s2019 sz | s |||| 0|eng d
020 _a9783030333911
_9978-3-030-33391-1
024 7 _a10.1007/978-3-030-33391-1
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aDomain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data
_h[electronic resource] :
_bFirst MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings /
_cedited by Qian Wang, Fausto Milletari, Hien V. Nguyen, Shadi Albarqouni, M. Jorge Cardoso, Nicola Rieke, Ziyue Xu, Konstantinos Kamnitsas, Vishal Patel, Badri Roysam, Steve Jiang, Kevin Zhou, Khoa Luu, Ngan Le.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXVII, 254 p. 113 illus., 79 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11795
505 0 _aDART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Imagesand Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance.
520 _aThis book constitutes the refereed proceedings of the First MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the First International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. DART 2019 accepted 12 papers for publication out of 18 submissions. The papers deal with methodological advancements and ideas that can improve the applicability of machine learning and deep learning approaches to clinical settings by making them robust and consistent across different domains. MIL3ID accepted 16 papers out of 43 submissions for publication, dealing with best practices in medical image learning with label scarcity and data imperfection. .
650 0 _aComputer vision.
_998854
650 0 _aArtificial intelligence.
_93407
650 0 _aMedical informatics.
_94729
650 1 4 _aComputer Vision.
_998856
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aHealth Informatics.
_931799
700 1 _aWang, Qian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998857
700 1 _aMilletari, Fausto.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998859
700 1 _aNguyen, Hien V.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998860
700 1 _aAlbarqouni, Shadi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998862
700 1 _aCardoso, M. Jorge.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998864
700 1 _aRieke, Nicola.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998865
700 1 _aXu, Ziyue.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998866
700 1 _aKamnitsas, Konstantinos.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998867
700 1 _aPatel, Vishal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998869
700 1 _aRoysam, Badri.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998870
700 1 _aJiang, Steve.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998871
700 1 _aZhou, Kevin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998872
700 1 _aLuu, Khoa.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998873
700 1 _aLe, Ngan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998875
710 2 _aSpringerLink (Online service)
_998877
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030333904
776 0 8 _iPrinted edition:
_z9783030333928
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11795
_998879
856 4 0 _uhttps://doi.org/10.1007/978-3-030-33391-1
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c87623
_d87623