000 03632nam a22005775i 4500
001 978-3-031-49559-5
003 DE-He213
005 20240730171812.0
007 cr nn 008mamaa
008 240410s2024 sz | s |||| 0|eng d
020 _a9783031495595
_9978-3-031-49559-5
024 7 _a10.1007/978-3-031-49559-5
_2doi
050 4 _aQA76.7-.73
072 7 _aUMX
_2bicssc
072 7 _aCOM051010
_2bisacsh
072 7 _aUMX
_2thema
082 0 4 _a005.13
_223
100 1 _aFumero, Juan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_9100436
245 1 0 _aProgramming Heterogeneous Hardware via Managed Runtime Systems
_h[electronic resource] /
_cby Juan Fumero, Athanasios Stratikopoulos, Christos Kotselidis.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2024.
300 _aXVII, 134 p. 31 illus., 30 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computer Science,
_x2191-5776
505 0 _a1. Introduction -- 2. Heterogeneous Hardware -- 3. Heterogeneous Programming Models -- 4. Managed Runtime Environments -- 5. Programming Heterogeneous Hardware via Managed Runtime Systems -- 6. Conclusions.
520 _aThis book provides an introduction to both heterogeneous execution and managed runtime environments (MREs) by discussing the current trends in computing and the evolution of both hardware and software. To this end, it first details how heterogeneous hardware differs from traditional CPUs, what their key components are and what challenges they pose to heterogenous execution. The most ubiquitous ones are General Purpose Graphics Processing Units (GPGPUs) which are pervasive across a plethora of application domains ranging from graphics processing to training of AI and Machine Learning models. Subsequently, current solutions on programming heterogeneous MREs are described, highlighting for each current existing solution the associated advantages and disadvantages. This book is written for scientists and advanced developers who want to understand how choices at the programming API level can affect performance and/or programmability of heterogeneous hardware accelerators, how toimprove the underlying runtime systems in order to seamlessly integrate diverse hardware resources, or how to exploit acceleration techniques from their preferred programming languages.
650 0 _aProgramming languages (Electronic computers).
_97503
650 0 _aComputers.
_98172
650 0 _aJava (Computer program language).
_93829
650 0 _aPython (Computer program language).
_96666
650 1 4 _aProgramming Language.
_939403
650 2 4 _aComputer Hardware.
_933420
650 2 4 _aJava.
_9100440
650 2 4 _aPython.
_934340
700 1 _aStratikopoulos, Athanasios.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_9100441
700 1 _aKotselidis, Christos.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_9100443
710 2 _aSpringerLink (Online service)
_9100445
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031495588
776 0 8 _iPrinted edition:
_z9783031495601
830 0 _aSpringerBriefs in Computer Science,
_x2191-5776
_9100446
856 4 0 _uhttps://doi.org/10.1007/978-3-031-49559-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cEBK
999 _c87822
_d87822