000 05977nam a22005415i 4500
001 978-3-031-19827-4
003 DE-He213
005 20240730174658.0
007 cr nn 008mamaa
008 221101s2022 sz | s |||| 0|eng d
020 _a9783031198274
_9978-3-031-19827-4
024 7 _a10.1007/978-3-031-19827-4
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aComputer Vision - ECCV 2022
_h[electronic resource] :
_b17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXIII /
_cedited by Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2022.
300 _aLVI, 749 p. 264 illus., 260 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13693
505 0 _aSimpleRecon: 3D Reconstruction without 3D Convolutions -- Structure and Motion from Casual Videos -- What Matters for 3D Scene Flow Network -- Correspondence Reweighted Translation Averaging -- Neural Strands: Learning Hair Geometry and Appearance from Multi-View Images -- GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs -- Objects Can Move: 3D Change Detection by Geometric Transformation Consistency -- Language-Grounded Indoor 3D Semantic Segmentation in the Wild -- Beyond Periodicity: Towards a Unifying Framework for Activations in Coordinate-MLPs -- Deforming Radiance Fields with Cages -- FLEX: Extrinsic Parameters-Free Multi-View 3D Human Motion Reconstruction -- MODE: Multi-View Omnidirectional Depth Estimation with 360° Cameras -- GigaDepth: Learning Depth from Structured Light with Branching Neural Networks -- ActiveNeRF: Learning Where to See with Uncertainty Estimation -- PoserNet: Refining Relative Camera Poses Exploiting Object Detections -- Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction & Pose Estimation -- Unbiased Gradient Estimation for Differentiable Surface Splatting via Poisson Sampling -- Towards Learning Neural Representations from Shadows -- Class-Incremental Novel Class Discovery -- Unknown-Oriented Learning for Open Set Domain Adaptation -- Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation -- DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation -- Class-Agnostic Object Counting Robust to Intraclass Diversity -- Burn after Reading: Online Adaptation for Cross-Domain Streaming Data -- Mind the Gap in Distilling StyleGANs -- Improving Test-Time Adaptation via Shift-Agnostic Weight Regularization and Nearest Source Prototypes -- Learning Instance-Specific Adaptation for Cross-Domain Segmentation -- RegionCL: Exploring Contrastive Region Pairsfor Self-Supervised Representation Learning -- Long-Tailed Class Incremental Learning -- DLCFT: Deep Linear Continual Fine-Tuning for General Incremental Learning -- Adversarial Partial Domain Adaptation by Cycle Inconsistency -- Combating Label Distribution Shift for Active Domain Adaptation -- GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D LiDAR Segmentation -- CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation -- A Unified Framework for Domain Adaptive Pose Estimation -- A Broad Study of Pre-training for Domain Generalization and Adaptation -- Prior Knowledge Guided Unsupervised Domain Adaptation -- GCISG: Guided Causal Invariant Learning for Improved Syn-to-Real Generalization -- AcroFOD: An Adaptive Method for Cross-Domain Few-Shot Object Detection -- Unsupervised Domain Adaptation for One-Stage Object Detector Using Offsets to Bounding Box -- Visual Prompt Tuning -- Quasi-Balanced Self-Training on Noise-Aware Synthesis of Object Point Clouds for Closing Domain Gap.
520 _aThe 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
650 0 _aComputer vision.
_9113528
650 1 4 _aComputer Vision.
_9113529
700 1 _aAvidan, Shai.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113530
700 1 _aBrostow, Gabriel.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113531
700 1 _aCissé, Moustapha.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113532
700 1 _aFarinella, Giovanni Maria.
_eeditor.
_0(orcid)
_10000-0002-6034-0432
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113533
700 1 _aHassner, Tal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113534
710 2 _aSpringerLink (Online service)
_9113535
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031198267
776 0 8 _iPrinted edition:
_z9783031198281
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13693
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-19827-4
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89563
_d89563