000 09117nam a22006615i 4500
001 978-3-030-61609-0
003 DE-He213
005 20240730175210.0
007 cr nn 008mamaa
008 201019s2020 sz | s |||| 0|eng d
020 _a9783030616090
_9978-3-030-61609-0
024 7 _a10.1007/978-3-030-61609-0
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aArtificial Neural Networks and Machine Learning - ICANN 2020
_h[electronic resource] :
_b29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part I /
_cedited by Igor Farkaš, Paolo Masulli, Stefan Wermter.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXXVII, 891 p. 348 illus., 260 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTheoretical Computer Science and General Issues,
_x2512-2029 ;
_v12396
505 0 _aAdversarial Machine Learning -- On the security relevance of initial weights in deep neural networks -- Fractal Residual Network for Face Image Super-Resolution -- From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially Trained Auto Encoders -- Generating Adversarial Texts for Recurrent Neural Networks -- Enforcing Linearity in DNN succours Robustness and Adversarial Image Generation -- Computational Analysis of Robustness in Neural Network Classifiers -- Bioinformatics and Biosignal Analysis -- Convolutional neural networks with reusable full-dimension-long layers for feature selection and classification of motor imagery in EEG signals -- Compressing Genomic Sequences by Using Deep Learning -- Learning Tn5 sequence bias from ATAC-seq on naked chromatin -- Tucker tensor decomposition of multi-session EEG data -- Reactive Hand Movements from Arm Kinematics and EMG Signals Based on Hierarchical Gaussian Process Dynamical Models -- Cognitive Models -- Investigating Efficient Learning and Compositionality in Generative LSTM Networks -- Fostering Event Compression using Gated Surprise -- Physiologically-inspired Neural Circuits for the Recognition of Dynamic Faces -- Hierarchical Modeling with Neurodynamical Agglomerative Analysis -- Convolutional Neural Networks and Kernel Methods -- Deep and Wide Neural Networks Covariance Estimation -- Monotone deep Spectrum Kernels -- Permutation Learning in Convolutional Neural Networks for Time Series Analysis -- Deep Learning Applications I -- GTFNet: Ground Truth Fitting Network for Crowd Counting -- Evaluation of Deep Learning Methods for Bone Suppression from Dual Energy Chest Radiography -- Multi-Person Absolute 3D Human Pose Estimation with Weak Depth Supervision -- Solar Power Forecasting Based on Pattern Sequence Similarity and Meta-Learning -- Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders -- Deep Learning Applications II.-Novel Sketch-based 3D Model Retrieval via Cross-domain Feature Clustering and Matching -- Multi-objective Cuckoo Algorithm for Mobile Devices Network Architecture Search -- DeepED: a Deep Learning Framework for Estimating Evolutionary Distances -- Interpretable Machine Learning Structure for an Early Prediction of Lane Changes -- Explainable Methods -- Convex Density Constraints for Computing Plausible Counterfactual Explanations -- Identifying Critical States by the Action-Based Variance of Expected Return -- Explaining Concept Drift by Means of Direction -- Few-shot Learning -- Context Adaptive Metric Model for Meta-Learning -- Ensemble-Based Deep Metric Learning for Few-Shot Learning -- More Attentional Local Descriptors for Few-shot Learning -- Implementation of Siamese-based Few-shot Learning Algorithms for the Distinction of COPD and Asthma Subjects -- Few-Shot Learning for Medical Image Classification -- Generative Adversarial Network -- Adversarial Defense via Attention-based Randomized Smoothing -- Learning to Learn from Mistakes: Robust Optimization for Adversarial Noise -- Unsupervised Anomaly Detection with a GAN Augmented Autoencoder -- An Efficient Blurring-Reconstruction Model to Defend against Adversarial Attacks -- EdgeAugment: Data Augmentation by Fusing and Filling Edge Map -- Face Anti-spoofing with a Noise-Attention Network Using Color-Channel Difference Images -- Generative and Graph Models -- Variational Autoencoder with Global- and Medium Timescale Auxiliaries for Emotion Recognition from Speech -- Improved Classification Based on Deep Belief Networks -- Temporal Anomaly Detection by Deep Generative Models with Applications to Biological Data -- Inferring, Predicting, and Denoising Causal Wave Dynamics -- PART-GAN: Privacy-Preserving Time-Series Sharing -- EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs -- Hybrid Neural-symbolic Architectures -- Facial Expression Recognition Method based on a Part-based TemporalConvolutional Network with a Graph-Structured Representation -- Generating Facial Expressions Associated with Text -- Image Processing -- Bilinear Fusion of Commonsense Knowledge with Attention-Based NLI Models -- Neural-Symbolic Relational Reasoning on Graph Models: Effective Link Inference and Computation from Knowledge Bases -- Tell Me Why You Feel That Way: Processing Compositional Dependency for Tree-LSTM Aspect Sentiment Triplet Extraction (TASTE) -- SOM-based System for Sequence Chunking and Planning -- Bilinear Models for Machine Learning -- Enriched Feature Representation and Combination for Deep Saliency Detection -- Spectral Graph Reasoning Network for Hyperspectral Image Classification -- Salient Object Detection with Edge Recalibration -- Multi-Scale Cross-Modal Spatial Attention Fusion for Multi-label Image Recognition -- A New Efficient Finger-Vein Verification Based on Lightweight Neural Network Using Multiple Schemes -- Medical Image Processing -- SU-Net: An EfficientEncoder-Decoder Model of Federated Learning for Brain Tumor Segmentation -- Synthesis of Registered Multimodal Medical Images with Lesions -- ACE-Net: Adaptive Context Extraction Network for Medical Image Segmentation -- Wavelet U-Net for Medical Image Segmentation -- Recurrent Neural Networks -- Character-based LSTM-CRF with semantic features for Chinese Event Element Recognition -- Sequence Prediction using Spectral RNNs -- Attention Based Mechanism for Energy Load Time Series Forecasting: AN-LSTM -- DartsReNet: Exploring new RNN cells in ReNet architectures -- On Multi-modal Fusion for Freehand Gesture Recognition -- Recurrent Neural Network Learning of Performance and Intrinsic Population Dynamics from Sparse Neural Data.
520 _aThe proceedings set LNCS 12396 and 12397 constitute the proceedings of the 29th International Conference on Artificial Neural Networks, ICANN 2020, held in Bratislava, Slovakia, in September 2020.* The total of 139 full papers presented in these proceedings was carefully reviewed and selected from 249 submissions. They were organized in 2 volumes focusing on topics such as adversarial machine learning, bioinformatics and biosignal analysis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action. *The conference was postponed to 2021 due to the COVID-19 pandemic.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer networks .
_931572
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_9115788
650 0 _aComputers.
_98172
650 0 _aApplication software.
_9115789
650 0 _aComputer engineering.
_910164
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Communication Networks.
_9115790
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_9115791
650 2 4 _aComputer Engineering and Networks.
_9115792
700 1 _aFarkaš, Igor.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115793
700 1 _aMasulli, Paolo.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115794
700 1 _aWermter, Stefan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115795
710 2 _aSpringerLink (Online service)
_9115796
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030616083
776 0 8 _iPrinted edition:
_z9783030616106
830 0 _aTheoretical Computer Science and General Issues,
_x2512-2029 ;
_v12396
_9115797
856 4 0 _uhttps://doi.org/10.1007/978-3-030-61609-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89814
_d89814