000 05794nam a22006135i 4500
001 978-3-030-97281-3
003 DE-He213
005 20240730175255.0
007 cr nn 008mamaa
008 220301s2022 sz | s |||| 0|eng d
020 _a9783030972813
_9978-3-030-97281-3
024 7 _a10.1007/978-3-030-97281-3
_2doi
050 4 _aTA1501-1820
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYT
_2thema
082 0 4 _a006
_223
245 1 0 _aBiomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis
_h[electronic resource] :
_bMICCAI 2021 Challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, Proceedings /
_cedited by Marc Aubreville, David Zimmerer, Mattias Heinrich.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _aIX, 194 p. 68 illus., 51 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v13166
505 0 _aPreface MIDOG 2021 -- Domain Adversarial RetinaNet as a Reference Algorithm for the MItosis DOmainGeneralization Challenge -- Assessing domain adaptation techniques for mitosis detection in multi-scanner breast cancer histopathology images -- Domain-Robust Mitotic Figure Detection with StyleGAN -- Two-step Domain Adaptation for Mitosis Cell Detection in Histopathology Images -- Robust Mitosis Detection Using a Cascade Mask-RCNN Approach With Domain-Specific Residual Cycle-GAN Data Augmentation -- Stain-Robust Mitotic Figure Detection for the Mitosis Domain Generalization Challenge -- MitoDet: Simple and robust mitosis detection -- Multi-source Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection -- Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge -- Detecting Mitosis against Domain Shift using a Fused Detector and Deep Ensemble Classi cation Model for MIDOG Challenge -- Domain Adaptive Cascade R-CNN for Mitosis DOmain Generalization (MIDOG) Challenge -- Reducing Domain Shift For Mitosis Detection Using Preprocessing Homogenizers -- Cascade RCNN for MIDOG Challenge -- Sk-Unet Model with Fourier Domain for Mitosis Detection -- Preface MOOD21 -- Self-Supervised 3D Out-of-Distribution Detection via Pseudoanomaly Generation -- Self-Supervised Medical Out-of-Distribution Using U-Net Vision Transformers -- SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes -- MetaDetector: Detecting Outliers by Learning to Learn from Self-supervision -- AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation -- Preface Learn2Reg 2021 -- Deformable Registration of Brain MR Images via a Hybrid Loss -- Fraunhofer MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge -- Unsupervised Volumetric Displacement Fields Using Cost Function Unrolling -- Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge -- TheLearn2Reg 2021 MICCAI Grand Challenge (PIMed Team) -- Fast 3D registration with accurate optimisation and little learning for Learn2Reg 2021 -- Progressive and Coarse-to-fine Network for Medical Image Registration across Phases, Modalities and Patients. -Semi-supervised Multilevel Symmetric Image Registration Method for Magnetic Resonance Whole Brain Images. .
520 _aThis book constitutes three challenges that were held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, which was planned to take place in Strasbourg, France but changed to an online event due to the COVID-19 pandemic. The peer-reviewed 18 long and 9 short papers included in this volume stem from the following three biomedical image analysis challenges: Mitosis Domain Generalization Challenge (MIDOG 2021), Medical Out-of-Distribution Analysis Challenge (MOOD 2021), and Learn2Reg (L2R 2021). The challenges share the need for developing and fairly evaluating algorithms that increase accuracy, reproducibility and efficiency of automated image analysis in clinically relevant applications.
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_9116113
650 0 _aComputers.
_98172
650 0 _aApplication software.
_9116114
650 0 _aMachine learning.
_91831
650 1 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_9116115
650 2 4 _aMachine Learning.
_91831
700 1 _aAubreville, Marc.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9116116
700 1 _aZimmerer, David.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9116117
700 1 _aHeinrich, Mattias.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9116118
710 2 _aSpringerLink (Online service)
_9116119
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030972806
776 0 8 _iPrinted edition:
_z9783030972820
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v13166
_9116120
856 4 0 _uhttps://doi.org/10.1007/978-3-030-97281-3
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89855
_d89855