000 04498nam a22006855i 4500
001 978-3-031-26409-2
003 DE-He213
005 20240730180329.0
007 cr nn 008mamaa
008 230316s2023 sz | s |||| 0|eng d
020 _a9783031264092
_9978-3-031-26409-2
024 7 _a10.1007/978-3-031-26409-2
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMachine Learning and Knowledge Discovery in Databases
_h[electronic resource] :
_bEuropean Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part III /
_cedited by Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aXLVI, 683 p. 204 illus., 194 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v13715
505 0 _aDeep learning -- robust and adversarial machine learning -- generative models -- computer vision -- meta-learning, neural architecture search.
520 _aThe multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science
_xMathematics.
_93866
650 0 _aComputer vision.
_9119672
650 0 _aComputer networks .
_931572
650 0 _aComputers, Special purpose.
_946653
650 0 _aComputer engineering.
_910164
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aMathematics of Computing.
_931875
650 2 4 _aComputer Vision.
_9119673
650 2 4 _aComputer Communication Networks.
_9119674
650 2 4 _aSpecial Purpose and Application-Based Systems.
_946654
650 2 4 _aComputer Engineering and Networks.
_9119675
700 1 _aAmini, Massih-Reza.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119676
700 1 _aCanu, Stéphane.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119677
700 1 _aFischer, Asja.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119678
700 1 _aGuns, Tias.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119679
700 1 _aKralj Novak, Petra.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119680
700 1 _aTsoumakas, Grigorios.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9119681
710 2 _aSpringerLink (Online service)
_9119682
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031264085
776 0 8 _iPrinted edition:
_z9783031264108
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v13715
_9119683
856 4 0 _uhttps://doi.org/10.1007/978-3-031-26409-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c90267
_d90267