000 03997nam a22006255i 4500
001 978-3-031-28996-5
003 DE-He213
005 20240730180845.0
007 cr nn 008mamaa
008 230328s2023 sz | s |||| 0|eng d
020 _a9783031289965
_9978-3-031-28996-5
024 7 _a10.1007/978-3-031-28996-5
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aTrustworthy Federated Learning
_h[electronic resource] :
_bFirst International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers /
_cedited by Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, Zehui Xiong.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2023.
300 _aX, 159 p. 53 illus., 49 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v13448
505 0 _aAdaptive Expert Models for Personalization in Federated Learning -- Federated Learning with GAN-based Data Synthesis for Non-iid Clients -- Practical and Secure Federated Recommendation with Personalized Mask -- A General Theory for Client Sampling in Federated Learning -- Decentralized adaptive clustering of deep nets is beneficial for client collaboration -- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing -- Fast Server Learning Rate Tuning for Coded Federated Dropout -- FedAUXfdp: Differentially Private One-Shot Federated Distillation -- Secure forward aggregation for vertical federated neural network -- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting -- Privacy-Preserving Federated Cross-Domain Social Recommendation.
520 _aThis book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
650 0 _aArtificial intelligence.
_93407
650 0 _aData protection.
_97245
650 0 _aSocial sciences
_xData processing.
_983360
650 0 _aApplication software.
_9122209
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aData and Information Security.
_931990
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
650 2 4 _aComputer and Information Systems Applications.
_9122210
700 1 _aGoebel, Randy.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122211
700 1 _aYu, Han.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122212
700 1 _aFaltings, Boi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122213
700 1 _aFan, Lixin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122214
700 1 _aXiong, Zehui.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122215
710 2 _aSpringerLink (Online service)
_9122216
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031289958
776 0 8 _iPrinted edition:
_z9783031289972
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v13448
_9122217
856 4 0 _uhttps://doi.org/10.1007/978-3-031-28996-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c90549
_d90549