000 | 05402nam a22006375i 4500 | ||
---|---|---|---|
001 | 978-3-642-12127-2 | ||
003 | DE-He213 | ||
005 | 20240730183330.0 | ||
007 | cr nn 008mamaa | ||
008 | 100325s2010 gw | s |||| 0|eng d | ||
020 |
_a9783642121272 _9978-3-642-12127-2 |
||
024 | 7 |
_a10.1007/978-3-642-12127-2 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aMultiple Classifier Systems _h[electronic resource] : _b9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010, Proceedings / _cedited by Neamat El Gayar, Josef Kittler, Fabio Roli. |
250 | _a1st ed. 2010. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2010. |
|
300 |
_aX, 328 p. 77 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aTheoretical Computer Science and General Issues, _x2512-2029 ; _v5997 |
|
505 | 0 | _aClassifier Ensembles(I) -- Weighted Bagging for Graph Based One-Class Classifiers -- Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers -- New Feature Splitting Criteria for Co-training Using Genetic Algorithm Optimization -- Incremental Learning of New Classes in Unbalanced Datasets: Learn?+?+?.UDNC -- Tomographic Considerations in Ensemble Bias/Variance Decomposition -- Choosing Parameters for Random Subspace Ensembles for fMRI Classification -- Classifier Ensembles(II) -- An Experimental Study on Ensembles of Functional Trees -- Multiple Classifier Systems under Attack -- SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning -- Unsupervised Change-Detection in Retinal Images by a Multiple-Classifier Approach -- A Double Pruning Algorithm for Classification Ensembles -- Estimation of the Number of Clusters Using Multiple Clustering Validity Indices -- Classifier Diversity -- "Good" and "Bad" Diversity in Majority Vote Ensembles -- Multi-information Ensemble Diversity -- Classifier Selection -- Dynamic Selection of Ensembles of Classifiers Using Contextual Information -- Selecting Structural Base Classifiers for Graph-Based Multiple Classifier Systems -- Combining Multiple Kernels -- A Support Kernel Machine for Supervised Selective Combining of Diverse Pattern-Recognition Modalities -- Combining Multiple Kernels by Augmenting the Kernel Matrix -- Boosting and Bootstrapping -- Class-Separability Weighting and Bootstrapping in Error Correcting Output Code Ensembles -- Boosted Geometry-Based Ensembles -- Online Non-stationary Boosting -- Handwriting Recognition -- Combining Neural Networks to Improve Performance of Handwritten Keyword Spotting -- Combining Committee-Based Semi-supervised and Active Learning and Its Application toHandwritten Digits Recognition -- Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition -- Applications -- Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting -- A Multiple Classifier System for Classification of LIDAR Remote Sensing Data Using Multi-class SVM -- A Multi-Classifier System for Off-Line Signature Verification Based on Dissimilarity Representation -- A Multi-objective Sequential Ensemble for Cluster Structure Analysis and Visualization and Application to Gene Expression -- Combining 2D and 3D Features to Classify Protein Mutants in HeLa Cells -- An Experimental Comparison of Hierarchical Bayes and True Path Rule Ensembles for Protein Function Prediction -- Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network -- Invited Papers -- Some Thoughts at the Interface of Ensemble Methods and Feature Selection -- Multiple Classifier Systems for the Recogonition of Human Emotions -- Erratum -- Erratum. | |
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aApplication software. _9131547 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 0 |
_aAlgorithms. _93390 |
|
650 | 0 |
_aComputer science. _99832 |
|
650 | 0 |
_aDatabase management. _93157 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer and Information Systems Applications. _9131548 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
650 | 2 | 4 |
_aAlgorithms. _93390 |
650 | 2 | 4 |
_aTheory of Computation. _9131549 |
650 | 2 | 4 |
_aDatabase Management. _93157 |
700 | 1 |
_aEl Gayar, Neamat. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9131550 |
|
700 | 1 |
_aKittler, Josef. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9131551 |
|
700 | 1 |
_aRoli, Fabio. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9131552 |
|
710 | 2 |
_aSpringerLink (Online service) _9131553 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783642121265 |
776 | 0 | 8 |
_iPrinted edition: _z9783642121289 |
830 | 0 |
_aTheoretical Computer Science and General Issues, _x2512-2029 ; _v5997 _9131554 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-642-12127-2 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c91808 _d91808 |