000 | 03685nam a22006135i 4500 | ||
---|---|---|---|
001 | 978-3-540-31351-9 | ||
003 | DE-He213 | ||
005 | 20240730194848.0 | ||
007 | cr nn 008mamaa | ||
008 | 100417s2006 gw | s |||| 0|eng d | ||
020 |
_a9783540313519 _9978-3-540-31351-9 |
||
024 | 7 |
_a10.1007/11615576 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aConstraint-Based Mining and Inductive Databases _h[electronic resource] : _bEuropean Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers / _cedited by Jean-Francois Boulicaut, Luc De Raedt, Heikki Mannila. |
250 | _a1st ed. 2006. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2006. |
|
300 |
_aX, 404 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3848 |
|
505 | 0 | _aThe Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery -- A Relational Query Primitive for Constraint-Based Pattern Mining -- To See the Wood for the Trees: Mining Frequent Tree Patterns -- A Survey on Condensed Representations for Frequent Sets -- Adaptive Strategies for Mining the Positive Border of Interesting Patterns: Application to Inclusion Dependencies in Databases -- Computation of Mining Queries: An Algebraic Approach -- Inductive Queries on Polynomial Equations -- Mining Constrained Graphs: The Case of Workflow Systems -- CrossMine: Efficient Classification Across Multiple Database Relations -- Remarks on the Industrial Application of Inductive Database Technologies -- How to Quickly Find a Witness -- Relevancy in Constraint-Based Subgroup Discovery -- A Novel Incremental Approach to Association Rules Mining in Inductive Databases -- Employing Inductive Databases in Concrete Applications -- Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining -- Boolean Formulas and Frequent Sets -- Generic Pattern Mining Via Data Mining Template Library -- Inductive Querying for Discovering Subgroups and Clusters. | |
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer science. _99832 |
|
650 | 0 |
_aDatabase management. _93157 |
|
650 | 0 |
_aInformation storage and retrieval systems. _922213 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aTheory of Computation. _9158266 |
650 | 2 | 4 |
_aDatabase Management. _93157 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _923927 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_aBoulicaut, Jean-Francois. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9158267 |
|
700 | 1 |
_aDe Raedt, Luc. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9158268 |
|
700 | 1 |
_aMannila, Heikki. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _921881 |
|
710 | 2 |
_aSpringerLink (Online service) _9158269 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540313311 |
776 | 0 | 8 |
_iPrinted edition: _z9783540819714 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3848 _9158270 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/11615576 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c95360 _d95360 |