000 04330nam a22006135i 4500
001 978-3-540-46650-5
003 DE-He213
005 20240730195546.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540466505
_9978-3-540-46650-5
024 7 _a10.1007/11894841
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aAlgorithmic Learning Theory
_h[electronic resource] :
_b17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings /
_cedited by José L. Balcázar, Philip M. Long, Frank Stephan.
250 _a1st ed. 2006.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2006.
300 _aXIII, 393 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4264
505 0 _aEditors' Introduction -- Editors' Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning fromStationary Processes -- Learning-Related Complexity of Linear Ranking Functions.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science.
_99832
650 0 _aAlgorithms.
_93390
650 0 _aMachine theory.
_9160648
650 0 _aNatural language processing (Computer science).
_94741
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aTheory of Computation.
_9160649
650 2 4 _aAlgorithms.
_93390
650 2 4 _aFormal Languages and Automata Theory.
_9160650
650 2 4 _aNatural Language Processing (NLP).
_931587
700 1 _aBalcázar, José L.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9160651
700 1 _aLong, Philip M.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9160652
700 1 _aStephan, Frank.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9160653
710 2 _aSpringerLink (Online service)
_9160654
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540466499
776 0 8 _iPrinted edition:
_z9783540831693
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4264
_9160655
856 4 0 _uhttps://doi.org/10.1007/11894841
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c95682
_d95682