000 | 03426nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-319-24486-0 | ||
003 | DE-He213 | ||
005 | 20240730195622.0 | ||
007 | cr nn 008mamaa | ||
008 | 151003s2015 sz | s |||| 0|eng d | ||
020 |
_a9783319244860 _9978-3-319-24486-0 |
||
024 | 7 |
_a10.1007/978-3-319-24486-0 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAlgorithmic Learning Theory _h[electronic resource] : _b26th International Conference, ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings / _cedited by Kamalika Chaudhuri, CLAUDIO GENTILE, Sandra Zilles. |
250 | _a1st ed. 2015. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2015. |
|
300 |
_aXVII, 395 p. 26 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v9355 |
|
505 | 0 | _aInductive inference -- Learning from queries, teaching complexity -- Computational learning theory and algorithms -- Statistical learning theory and sample complexity -- Online learning -- Stochastic optimization -- Kolmogorov complexity, algorithmic information theory. | |
520 | _aThis book constitutes the proceedings of the 26th International Conference on Algorithmic Learning Theory, ALT 2015, held in Banff, AB, Canada, in October 2015, and co-located with the 18th International Conference on Discovery Science, DS 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 44 submissions. In addition the book contains 2 full papers summarizing the invited talks and 2 abstracts of invited talks. The papers are organized in topical sections named: inductive inference; learning from queries, teaching complexity; computational learning theory and algorithms; statistical learning theory and sample complexity; online learning, stochastic optimization; and Kolmogorov complexity, algorithmic information theory. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer science. _99832 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aTheory of Computation. _9160868 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _9160869 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_aChaudhuri, Kamalika. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9160870 |
|
700 | 1 |
_aGENTILE, CLAUDIO. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9160871 |
|
700 | 1 |
_aZilles, Sandra. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9160872 |
|
710 | 2 |
_aSpringerLink (Online service) _9160873 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319244853 |
776 | 0 | 8 |
_iPrinted edition: _z9783319244877 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v9355 _9160874 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-24486-0 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c95712 _d95712 |