000 03632nam a22005775i 4500
001 978-3-642-40705-5
003 DE-He213
005 20240730195800.0
007 cr nn 008mamaa
008 131021s2013 gw | s |||| 0|eng d
020 _a9783642407055
_9978-3-642-40705-5
024 7 _a10.1007/978-3-642-40705-5
_2doi
050 4 _aQA76.9.D343
072 7 _aUNF
_2bicssc
072 7 _aUYQE
_2bicssc
072 7 _aCOM021030
_2bisacsh
072 7 _aUNF
_2thema
072 7 _aUYQE
_2thema
082 0 4 _a006.312
_223
245 1 0 _aPartially Supervised Learning
_h[electronic resource] :
_bSecond IAPR International Workshop, PSL 2013, Nanjing, China, May 13-14, 2013, Revised Selected Papers /
_cedited by Zhi-Hua Zhou, Friedhelm Schwenker.
250 _a1st ed. 2013.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aIX, 117 p. 34 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v8183
505 0 _aPartially Supervised Anomaly Detection using Convex Hulls on a 2D Parameter Space -- Self-Practice Imitation Learning from Weak Policy -- Semi-Supervised Dictionary Learning of Sparse Representations for Emotion Recognition -- Adaptive Graph Constrained NMF for Semi-Supervised Learning -- Kernel Parameter Optimization in Stretched Kernel-based Fuzzy Clustering -- Conscientiousness Measurement from Weibo's Public Information -- Meta-Learning of Exploration and Exploitation Parameters with Replacing Eligibility Traces -- Neighborhood Co-regularized Multi-view Spectral Clustering of Microbiome Data -- A Robust Image Watermarking Scheme Based on BWT and ICA -- A New Weighted Sparse Representation Based on MSLBP and Its Application to Face Recognition.
520 _aThis book constitutes the thoroughly refereed revised selected papers from the Second IAPR International Workshop, PSL 2013, held in Nanjing, China, in May 2013. The 10 papers included in this volume were carefully reviewed and selected from 26 submissions. Partially supervised learning is a rapidly evolving area of machine learning. It generalizes many kinds of learning paradigms including supervised and unsupervised learning, semi-supervised learning for classification and regression, transductive learning, semi-supervised clustering, multi-instance learning, weak label learning, policy learning in partially observable environments, etc.
650 0 _aData mining.
_93907
650 0 _aPattern recognition systems.
_93953
650 0 _aArtificial intelligence.
_93407
650 1 4 _aData Mining and Knowledge Discovery.
_9161327
650 2 4 _aAutomated Pattern Recognition.
_931568
650 2 4 _aArtificial Intelligence.
_93407
700 1 _aZhou, Zhi-Hua.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9161328
700 1 _aSchwenker, Friedhelm.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9161329
710 2 _aSpringerLink (Online service)
_9161330
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783642407048
776 0 8 _iPrinted edition:
_z9783642407062
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v8183
_9161331
856 4 0 _uhttps://doi.org/10.1007/978-3-642-40705-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c95776
_d95776