000 04345nam a22006975i 4500
001 978-3-031-25046-0
003 DE-He213
005 20240730200622.0
007 cr nn 008mamaa
008 230131s2023 sz | s |||| 0|eng d
020 _a9783031250460
_9978-3-031-25046-0
024 7 _a10.1007/978-3-031-25046-0
_2doi
050 4 _aTA1501-1820
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYT
_2thema
082 0 4 _a006
_223
245 1 0 _aMedical Applications with Disentanglements
_h[electronic resource] :
_bFirst MICCAI Workshop, MAD 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings /
_cedited by Jana Fragemann, Jianning Li, Xiao Liu, Sotirios A. Tsaftaris, Jan Egger, Jens Kleesiek.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aX, 127 p. 40 illus., 26 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13823
505 0 _aApplying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations -- Instance-Specific Augmentation of Brain MRIs with Variational Autoencoder -- Low-rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement -- Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder -- Disentangling Factors of Morpholigical Variation in an Invertible Brain Aging Model -- A study of representational properties of unsupervised anomaly detection in brain MRI.
520 _aThis book constitutes the post-conference proceedings of the First MICCAI Workshop on Medical Applications with Disentanglements, MAD 2022, held in conjunction with MICCAI 2022, in Singapore, on September22, 2022. The 8 full papers presented in this book together with one short paper were carefully reviewed and cover generative adversarial networks (GAN), variational autoencoders (VAE) and normalizing-flow architectures as well as a wide range of medical applications, like brain age prediction, skull reconstruction and unsupervised pathology disentanglement.
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_9164121
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer engineering.
_910164
650 0 _aComputer networks .
_931572
650 0 _aComputers.
_98172
650 0 _aApplication software.
_9164122
650 1 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aComputer Vision.
_9164123
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Engineering and Networks.
_9164124
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_9164125
700 1 _aFragemann, Jana.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164126
700 1 _aLi, Jianning.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164127
700 1 _aLiu, Xiao.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164128
700 1 _aTsaftaris, Sotirios A.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164129
700 1 _aEgger, Jan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164130
700 1 _aKleesiek, Jens.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9164131
710 2 _aSpringerLink (Online service)
_9164132
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031250453
776 0 8 _iPrinted edition:
_z9783031250477
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13823
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-25046-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c96144
_d96144