000 06525nam a22007095i 4500
001 978-3-030-32689-0
003 DE-He213
005 20240730202509.0
007 cr nn 008mamaa
008 191010s2019 sz | s |||| 0|eng d
020 _a9783030326890
_9978-3-030-32689-0
024 7 _a10.1007/978-3-030-32689-0
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aUncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures
_h[electronic resource] :
_bFirst International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings /
_cedited by Hayit Greenspan, Ryutaro Tanno, Marius Erdt, Tal Arbel, Christian Baumgartner, Adrian Dalca, Carole H. Sudre, William M. Wells, Klaus Drechsler, Marius George Linguraru, Cristina Oyarzun Laura, Raj Shekhar, Stefan Wesarg, Miguel Ángel González Ballester.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXVII, 192 p. 83 illus., 76 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11840
505 0 _aUNSURE 2019: Uncertainty quantification and noise modelling -- Probabilistic Surface Reconstruction with Unknown Correspondence -- Probabilistic Image Registration via Deep Multi-class Classification: Characterizing Uncertainty -- Propagating Uncertainty Across Cascaded Medical Imaging Tasks For Improved Deep Learning Inference -- Reg R-CNN: Lesion Detection and Grading under Noisy Labels -- Fast Nonparametric Mutual Information based Registration and Uncertainty Estimation -- Quantifying Uncertainty of deep neural networks in skin lesion classification -- UNSURE 2019: Domain shift robustness -- A Generalized Approach to Determine Confident Samples for Deep Neural Networks on Unseen Data -- Out of distribution detection for intra-operative functional imaging -- CLIP 2019 -- A Clinical Measuring Platform for Building the Bridge across the Quantification of Pathological N-cells in Medical Imaging for Studies of Disease -- Spatiotemporal statistical model of anatomical landmarks on a human embryonic brain -- Spaciousness filters for non-contrast CT volume segmentation of the intestine region for emergency ileus diagnosis -- Recovering physiological changes in nasal anatomy with confidence estimates -- Synthesis of Medical Images Using GANs -- DPANet: A Novel Network Based on Dense Pyramid Feature Extractor and Dual Correlation Analysis Attention Modules for Colon Glands Segmentation -- Multi-instance deep learning with graph convolutional neural networks for diagnosis of kidney diseases using ultrasound imaging -- Data Augmentation from Sketch -- An automated CNN-based 3D anatomical landmark detection method to facilitate surface-based 3D facial shape analysis -- A Device-independent Novel Statistical Modeling for Cerebral TOF-MRA data Segmentation -- Three-dimensional face reconstruction from uncalibrated photographs: application to early detection of genetic syndromes.
520 _aThis book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data. .
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer vision.
_9171732
650 0 _aMedical informatics.
_94729
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Vision.
_9171733
650 2 4 _aHealth Informatics.
_931799
700 1 _aGreenspan, Hayit.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171734
700 1 _aTanno, Ryutaro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171735
700 1 _aErdt, Marius.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171736
700 1 _aArbel, Tal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171737
700 1 _aBaumgartner, Christian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171738
700 1 _aDalca, Adrian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171739
700 1 _aSudre, Carole H.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171740
700 1 _aWells, William M.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171741
700 1 _aDrechsler, Klaus.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171742
700 1 _aLinguraru, Marius George.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171743
700 1 _aOyarzun Laura, Cristina.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171744
700 1 _aShekhar, Raj.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171745
700 1 _aWesarg, Stefan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171746
700 1 _aGonzález Ballester, Miguel Ángel.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9171747
710 2 _aSpringerLink (Online service)
_9171748
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030326883
776 0 8 _iPrinted edition:
_z9783030326906
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11840
_9171749
856 4 0 _uhttps://doi.org/10.1007/978-3-030-32689-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c97043
_d97043