000 | 05067nam a22006495i 4500 | ||
---|---|---|---|
001 | 978-3-319-77553-1 | ||
003 | DE-He213 | ||
005 | 20240730202914.0 | ||
007 | cr nn 008mamaa | ||
008 | 180301s2018 sz | s |||| 0|eng d | ||
020 |
_a9783319775531 _9978-3-319-77553-1 |
||
024 | 7 |
_a10.1007/978-3-319-77553-1 _2doi |
|
050 | 4 | _aQA76.9.A43 | |
072 | 7 |
_aUMB _2bicssc |
|
072 | 7 |
_aCOM051300 _2bisacsh |
|
072 | 7 |
_aUMB _2thema |
|
082 | 0 | 4 |
_a518.1 _223 |
245 | 1 | 0 |
_aGenetic Programming _h[electronic resource] : _b21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings / _cedited by Mauro Castelli, Lukas Sekanina, Mengjie Zhang, Stefano Cagnoni, Pablo García-Sánchez. |
250 | _a1st ed. 2018. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2018. |
|
300 |
_aXII, 323 p. 80 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aTheoretical Computer Science and General Issues, _x2512-2029 ; _v10781 |
|
505 | 0 | _aUsing GP Is NEAT: Evolving Compositional Pattern Production Functions -- Evolving the Topology of Large Scale Deep Neural Networks -- Evolving Graphs by Graph Programming -- Pruning Techniques for Mixed Ensembles of Genetic Programming Models -- Analyzing Feature Importance for Metabolomics Using Genetic Programming -- Generating Redundant Features with Unsupervised Multi-Tree Genetic Programming -- On the Automatic Design of a Representation for Grammar-Based Genetic Programming -- Multi-Level Grammar Genetic Programming for Scheduling in Heterogeneous Networks -- Scaling Tangled Program Graphs to Visual Reinforcement Learning in ViZDoom -- Towards In Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States -- A Multiple Expression Alignment Framework for Genetic Programming -- Multi-Objective Evolution of Ultra-Fast General-Purpose Hash Functions -- A Comparative Study on Crossover in Cartesian Genetic Programming -- Evolving Better RNAfold Structure Prediction -- Geometric Crossover in Syntactic Space -- Investigating A Machine Breakdown Genetic Programming Approach for Dynamic Job Shop Scheduling -- Structurally Layered Representation Learning: Towards Deep Learning Through Genetic Programming -- Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-Relational Association Rules in the Semantic Web -- Genetic Programming Hyperheuristic with Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling. . | |
520 | _aThis book constitutes the refereed proceedings of the 21st European Conference on Genetic Programming, EuroGP 2018, held in Parma, Italy, in April 2018, co-located with the Evo* 2018 events, EvoCOP, EvoMUSART, and EvoApplications. The 11 revised full papers presented together with 8 poster papers were carefully reviewed and selected from 36 submissions. The wide range of topics in this volume reflects the current state of research in the field. Thus, we see topics and applications including analysis of feature importance for metabolomics, semantic methods, evolution of boolean networks, generation of redundant features, ensembles of GP models, automatic design of grammatical representations, GP and neuroevolution, visual reinforcement learning, evolution of deep neural networks, evolution of graphs, and scheduling in heterogeneous networks. | ||
650 | 0 |
_aAlgorithms. _93390 |
|
650 | 0 |
_aComputer arithmetic and logic units. _936750 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aData structures (Computer science). _98188 |
|
650 | 0 |
_aInformation theory. _914256 |
|
650 | 1 | 4 |
_aAlgorithms. _93390 |
650 | 2 | 4 |
_aArithmetic and Logic Structures. _936752 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _9173620 |
650 | 2 | 4 |
_aData Structures and Information Theory. _931923 |
700 | 1 |
_aCastelli, Mauro. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173621 |
|
700 | 1 |
_aSekanina, Lukas. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173622 |
|
700 | 1 |
_aZhang, Mengjie. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173623 |
|
700 | 1 |
_aCagnoni, Stefano. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173624 |
|
700 | 1 |
_aGarcía-Sánchez, Pablo. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173625 |
|
710 | 2 |
_aSpringerLink (Online service) _9173626 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319775524 |
776 | 0 | 8 |
_iPrinted edition: _z9783319775548 |
830 | 0 |
_aTheoretical Computer Science and General Issues, _x2512-2029 ; _v10781 _9173627 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-77553-1 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c97241 _d97241 |