000 08451nam a22008175i 4500
001 978-3-030-61166-8
003 DE-He213
005 20240730203526.0
007 cr nn 008mamaa
008 201003s2020 sz | s |||| 0|eng d
020 _a9783030611668
_9978-3-030-61166-8
024 7 _a10.1007/978-3-030-61166-8
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aInterpretable and Annotation-Efficient Learning for Medical Image Computing
_h[electronic resource] :
_bThird International Workshop, iMIMIC 2020, Second International Workshop, MIL3ID 2020, and 5th International Workshop, LABELS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings /
_cedited by Jaime Cardoso, Hien Van Nguyen, Nicholas Heller, Pedro Henriques Abreu, Ivana Isgum, Wilson Silva, Ricardo Cruz, Jose Pereira Amorim, Vishal Patel, Badri Roysam, Kevin Zhou, Steve Jiang, Ngan Le, Khoa Luu, Raphael Sznitman, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Samaneh Abbasi.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXVII, 292 p. 109 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12446
505 0 _aiMIMIC 2020 -- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers -- Projective Latent Interventions for Understanding and Fine-tuning Classifiers -- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging -- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations -- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations -- Explainable Disease Classification via weakly-supervised segmentation -- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns -- Explainability for regression CNN in fetal head circumference estimation from ultrasound images -- MIL3ID 2020 -- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins -- Semi-supervised Instance Segmentation with a Learned Shape Prior -- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs -- Semi-supervised Machine Learning with MixMatch and Equivalence Classes -- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT -- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation -- A Case Study of Transfer of Lesion-Knowledge -- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection -- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation -- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification -- Semi-supervised classification of chest radiographs -- LABELS 2020 -- Risk of training diagnostic algorithms on data with demographic bias -- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks -- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels -- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology -- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection -- Labeling of Multilingual Breast MRI Reports -- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning -- Labelling imaging datasets on the basis of neuroradiology reports: a validation study -- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset -- Paying Per-label Attention for Multi-label Extraction from Radiology Reports.
520 _aThis book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer vision.
_9176423
650 0 _aSocial sciences
_xData processing.
_983360
650 0 _aBioinformatics.
_99561
650 0 _aPattern recognition systems.
_93953
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Vision.
_9176424
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
650 2 4 _aComputational and Systems Biology.
_931619
650 2 4 _aAutomated Pattern Recognition.
_931568
700 1 _aCardoso, Jaime.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176425
700 1 _aVan Nguyen, Hien.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176426
700 1 _aHeller, Nicholas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176427
700 1 _aHenriques Abreu, Pedro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176428
700 1 _aIsgum, Ivana.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176429
700 1 _aSilva, Wilson.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176430
700 1 _aCruz, Ricardo.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176431
700 1 _aPereira Amorim, Jose.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176432
700 1 _aPatel, Vishal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176433
700 1 _aRoysam, Badri.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176434
700 1 _aZhou, Kevin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176435
700 1 _aJiang, Steve.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176436
700 1 _aLe, Ngan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176437
700 1 _aLuu, Khoa.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176438
700 1 _aSznitman, Raphael.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176439
700 1 _aCheplygina, Veronika.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176440
700 1 _aMateus, Diana.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176441
700 1 _aTrucco, Emanuele.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176442
700 1 _aAbbasi, Samaneh.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9176443
710 2 _aSpringerLink (Online service)
_9176444
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030611651
776 0 8 _iPrinted edition:
_z9783030611675
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12446
_9176445
856 4 0 _uhttps://doi.org/10.1007/978-3-030-61166-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c97542
_d97542