000 06368nam a22006975i 4500
001 978-3-031-44153-0
003 DE-He213
005 20240730203951.0
007 cr nn 008mamaa
008 240204s2023 sz | s |||| 0|eng d
020 _a9783031441530
_9978-3-031-44153-0
024 7 _a10.1007/978-3-031-44153-0
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
_h[electronic resource] :
_b8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II /
_cedited by Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorent.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aXIX, 243 p. 75 illus., 59 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14092
505 0 _aApplying Quadratic Penalty Method for Intensity-based Deformable Image Registration on BraTS-Reg Challenge 2022 -- WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network -- Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients -- 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast MRI Registration in Brain Tumors -- Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive Learning -- Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation -- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation -- An Unpaired Cross-modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea.-Weakly Unsupervised Domain Adaptation for Vestibular Schwannoma Segmentation -- Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation -- Enhancing Data Diversity for Self-training Based Unsupervised Cross-modality Vestibular Schwannoma and Cochlea Segmentation -- Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation -- A Local Score Strategy for Weight Aggregation in Federated Learning -- Ensemble Outperforms Single Models in Brain Tumor Segmentation -- FeTS Challenge 2022 Task 1: Implementing FedMGDA+ and a new partitioning -- Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning -- Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation -- Robust Learning Protocol for Federated Tumor Segmentation Challenge -- Model Aggregation for Federated Learning Considering Non-IID andImbalanced Data Distribution -- FedPIDAvg: A PID controller inspired aggregation method for Federated Learning -- Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation -- Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge.
520 _aThis two volume-set LNCS 13769 and LNCS 14092 constitutes the refereed proceedings of the 8th International MICCAI Brainlesion Workshop, BrainLes 2022, as well as the Brain Tumor Segmentation (BraTS) Challenge, the Brain Tumor Sequence Registration (BraTS-Reg) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the Federated Tumor Segmentation (FeTS) Challenge. These were held jointly at the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2022, in September 2022. The 46 revised full papers presented in these volumes were selected form 65 submissions. The presented contributions describe the research of computational scientists and clinical researchers working on brain lesions - specifically glioma, multiple sclerosis, cerebral stroke, traumatic brain injuries, vestibular schwannoma, and white matter hyper-intensities of presumed vascular origin. .
650 0 _aComputer vision.
_9177781
650 0 _aMedical informatics.
_94729
650 0 _aSocial sciences
_xData processing.
_983360
650 0 _aApplication software.
_9177782
650 0 _aEducation
_xData processing.
_982607
650 0 _aArtificial intelligence.
_93407
650 1 4 _aComputer Vision.
_9177783
650 2 4 _aHealth Informatics.
_931799
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
650 2 4 _aComputer and Information Systems Applications.
_9177784
650 2 4 _aComputers and Education.
_941129
650 2 4 _aArtificial Intelligence.
_93407
700 1 _aBakas, Spyridon.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177785
700 1 _aCrimi, Alessandro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177786
700 1 _aBaid, Ujjwal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177787
700 1 _aMalec, Sylwia.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177788
700 1 _aPytlarz, Monika.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177789
700 1 _aBaheti, Bhakti.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177790
700 1 _aZenk, Maximilian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177791
700 1 _aDorent, Reuben.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9177792
710 2 _aSpringerLink (Online service)
_9177793
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031441523
776 0 8 _iPrinted edition:
_z9783031441547
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14092
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-44153-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c97668
_d97668