Normal view MARC view ISBD view

Broadband Direct RF Digitization Receivers [electronic resource] / by Olivier Jamin.

By: Jamin, Olivier [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Analog Circuits and Signal Processing: 121Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XVI, 162 p. 166 illus., 68 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319011509.Subject(s): Engineering | Microprocessors | Electronic circuits | Engineering | Circuits and Systems | Signal, Image and Speech Processing | Processor ArchitecturesAdditional physical formats: Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
RF Receiver Architecture State-of-the-Art -- System-Level Design Framework for Direct RF Digitization Receivers -- Application to the System Design of a Multi-Channel Cable Receiver -- Realization & Measurements -- Conclusions & Perspectives.
In: Springer eBooksSummary: This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.  �         Provides system-level analysis of direct RF sampling & digitization receivers, from the antenna to the digital channel selection; �         Includes analysis of broadband non-linearity, applicable for low-pass and band-pass sampling strategies; Describes system-level design of an application-optimized signal conditioner, including a single-inductance multi-slope programmable RF amplitude equalizer, together with its control algorithm and a mixed-signal AGC loop combining RMS and peak detection.  .
    average rating: 0.0 (0 votes)
No physical items for this record

RF Receiver Architecture State-of-the-Art -- System-Level Design Framework for Direct RF Digitization Receivers -- Application to the System Design of a Multi-Channel Cable Receiver -- Realization & Measurements -- Conclusions & Perspectives.

This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.  �         Provides system-level analysis of direct RF sampling & digitization receivers, from the antenna to the digital channel selection; �         Includes analysis of broadband non-linearity, applicable for low-pass and band-pass sampling strategies; Describes system-level design of an application-optimized signal conditioner, including a single-inductance multi-slope programmable RF amplitude equalizer, together with its control algorithm and a mixed-signal AGC loop combining RMS and peak detection.  .

There are no comments for this item.

Log in to your account to post a comment.